292 research outputs found

    An FPGA-based controller for collaborative robotics

    Get PDF
    The use of robots is becoming more common in society. Industrial robots are being developed to work with people, and lower-force collaborative robots are being developed to help people in their everyday lives. These may need fast and sophisticated motion control and behavioral algorithms, but are expected to be more compact and lower cost. This paper proposes a processor plus FPGA solution for the control systems for such robots, where the FPGA performs all real-time tasks, freeing the processor to run lower-frequency high level control and interface to other devices such as camera systems. A demonstrator robot is designed, combining multi-axis motion control with 3D robot vision

    Development of a compact and low-cost weather station for renewable energy applications

    Get PDF
    This paper describes the development of a weather station integrating several sensors which allows the measurement and data storage of the following environmental parameters: solar irradiance, temperature, humidity, wind speed, and wind direction. The collected data is later transferred to a mobile device, where it is stored in a database and processed in order to be visualized and analyzed by the user. For such purpose, a dedicated mobile app was developed and presented along the paper. The weather station also integrates small solar photovoltaic modules of three different technologies: polycrystalline, monocrystalline and amorphous silicon. Based on that, the weather station also collects information that may be employed to help the user in determining the most suitable solar photovoltaic technology for installation in a particular location. The developed system uses a Bluetooth Low Energy (BLE) wireless network to transfer the data to the mobile device when the user approaches the weather station. The system operation was validated through experimental tests that encompass all the main developed features, from the data acquisition in the weather station, to the visualization in the mobile device.- (undefined

    Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes

    Get PDF
    This is the post-print version of the final paper published in Chemosphere. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.A carbonaceous (heterotrophic) activated sludge process (ASP), nitrifying ASP and a nitrifying/denitrifying ASP have been studied to examine the role of process type in steroid estrogen removal. Biodegradation efficiencies for total steroid estrogens (ÎŁEST) of 80 and 91% were recorded for the nitrifying/denitrifying ASP and nitrifying ASP respectively. Total estrogen biodegradation (ÎŁEST) was only 51% at the carbonaceous ASP, however, the extent of biodegradation in the absence of nitrification clearly indicates the important role of heterotrophs in steroid estrogen removal. The low removal efficiency did not correlate with biomass activity for which the ASPcarbonaceous recorded 80 ÎŒg kg−1 biomass d−1 compared to 61 and 15 ÎŒg kg−1 biomass d−1 at the ASPnitrifying and ASPnitrifying/denitrifying respectively. This finding was explained by a moderate correlation (r2 = 0.55) between total estrogen loading (ÎŁEST mg m−3 d−1) and biomass activity (ÎŒg ÎŁEST degraded kg−1 d−1) and has established the impact of loading on steroid estrogen removal at full-scale. At higher solids retention time (SRT), steroid estrogen biodegradation of >80% was observed, as has previously been reported. It is postulated that hydraulic retention time (HRT) is as important as SRT as this governs both reaction time and loading. This observation is based on the high specific estrogen activity determined at the ASPcarbonaceous plant, the significance of estrogen loading and the positive linear correlation between SRT and HRT.Public Utilities Board of Singapore, Anglian Water Ltd., Severn Trent Water Ltd., Thames Water Utilities Ltd., United Utilities Plc., and Yorkshire Water Services Ltd

    Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es801952h.Steroids are excreted from the human body in the conjugated form but are present in sewage influent and effluent as the free steroid, the major source of estrogenic activity observed in water courses. The fate of sulfate and glucuronide conjugated steroid estrogens was investigated in batch studies using activated sludge grown on synthetic sewage in a laboratory-scale Husmann simulation and crude sewage from the field. A clear distinction between the fate of sulfate and glucuronide conjugates was observed in both matrices, with sulfated conjugates proving more recalcitrant and glucuronide deconjugation preferential in crude sewage. For each conjugate, the free steroid was observed in the biotic samples. The degree of free steroid formation was dependent on the conjugate moiety, favoring the glucuronide. Subsequent degradation of the free steroid (and sorption to the activated sludge solid phase) was evaluated. Deconjugation followed the first order reaction rate with rate constants for 17α-ethinylestradiol 3-glucuronide, estriol 16α-glucuronide, and estrone 3-glucuronide determined as 0.32, 0.24, and 0.35 h respectively. The activated sludge solid retention time over the range of 3−9 days had 74 to 94% of sulfate conjugates remaining after 8 h. In contrast, a correlation between increasing temperature and decreasing 17α-ethinylestradiol 3-glucuronide concentrations in the activated sludge observed no conjugate present in the AS following 8 h at 22 °C Based on these batch studies and literature excretion profiles, a hypothesis is presented on which steroids and what form (glucuronide, sulfate, or free) will likely enter the sewage treatment plant.EPSR

    The Molecular Signature More Than the Site of Localization Defines the Origin of the Malignancy

    Get PDF
    The diagnosis of the primary origin of metastases to the thyroid gland is not easy, in particular in case of concomitant lung adenocarcinoma which shares several immunophenotypical features. Although rare, these tumors should be completely characterized in order to set up specific therapies. This is the case of a 64-years-old woman referred to our institution for a very advanced neoplastic disease diagnosed both as poorly differentiated/anaplastic thyroid cancer (PDTC/ATC) for the huge involvement of the neck and concomitant lung adenocarcinoma (LA). Neither the clinical features and the imaging evaluation nor the tumor markers allowed a well-defined diagnosis. Moreover, the histologic features of the thyroid and lung biopsies confirmed the synchronous occurrence of two different tumors. The molecular analysis showed a c.34G>T (p.G12C) mutation in the codon 12 of K-RAS gene, in both tissues. Since, this mutation is highly prevalent in LA and virtually absent in PDTC/ATC the lung origin of the malignancy was assumed, and the patient was addressed to the correct therapeutic strategy

    Upgraded Pulsating Heat Pipe Only For Space (U-Phos): Results of the 22nd Rexus Sounding Rocket Campaign

    Get PDF
    A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer devices in order to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a so called Pulsating Heat Pipe (PHP), or better, a Space Pulsating Heat Pipe (SPHP). Since the objective of the present work is to experimentally demonstrate the feasibility of such a hybrid device, a SPHP has been designed, built, instrumented and tested both on ground and microgravity conditions on the 22nd ESA REXUS Sounding Rocket Campaign. Ground tests demonstrate that the device effectively work as a gravity assisted loop thermosyphon, whether the sounding rocket data clearly reveal a change in the thermal hydraulic behavior very similar to the PHP. Since a microgravity period of approximately 120s is not sufficient to reach a pseudo steady state regime, further investigation on a longer term weightless condition is mandatory

    U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    Get PDF
    U-PHOS Project aims to analyse and characterise the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device consisting of a serpentine capillary tube, evacuated, partially filled with a working fluid and finally sealed. In this configuration, the liquid and vapour phases are randomly distributed in the form of liquid slugs and vapour plugs. The heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. On ground conditions, a small diameter is required in order to obtain a confined slug flow regime. In milli-gravity conditions, buoyancy forces become less intense and the PHP diameter may be increased still maintaining the slug/plug flow configuration typical of the PHP operation. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a Large Diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed

    Pulsating Heat pipe only for Space (PHOS): Results of the REXUS 18 sounding rocket campaign

    Get PDF
    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described

    The social cost of chronic kidney disease in Italy

    Get PDF
    This study aims to estimate the mean annual social cost per patient with chronic kidney disease (CKD) by stages 4 and 5 pre-dialyses and cost components in Italy. The multicenter cross-sectional study included all adult outpatients in charge of the 14 main Nephrology Centers of Tuscany Region during 7 weeks from 2012 to 2013. Direct medical costs have been estimated using tariffs for laboratory tests, diagnostic exams, visits, hospitalization and prices for drugs. Non-medical costs included expenses of low-protein special foods, travel, and formal and informal care. Patients' and caregivers' losses of productivity have been estimated as indirect costs using the human capital approach. Costs have been expressed in Euros (2016). Totals of 279 patients in stage 4 and 205 patients in stage 5 have been enrolled. The estimated mean annual social cost of a patient with CKD were a,notsign7422 (+/- a,notsign6255) for stage 4 and a,notsign8971 (+/- a,notsign6503) for stage 5 (p < 0.05). Direct medical costs were higher in stage 5 as compared to stage 4; direct non-medical costs and indirect costs accounted, respectively, for 41 and 5 % of the total social cost of CKD stage 4 and for 33 and 9 % of CKD stage 5. In Italy, the overall annual social cost of CKD was a,notsign1,809,552,398 representing 0.11 % of the Gross Domestic Product. Direct non-medical costs and indirect costs were weighted on the social cost of CKD almost as much as the direct medical cost. Patients, their families and the productivity system sustain the burden of the disease almost as much as the healthcare system. © 2016, The Author(s)
    • 

    corecore